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We prove rigorously the occurrence of zero-mode Bose–Einstein condensation
for a class of continuous homogeneous systems of boson particles with super-
stable interactions. This is the first example of a translation invariant continu-
ous Bose-system, where the existence of the Bose–Einstein condensation is
proved rigorously for the case of non-trivial two-body particle interactions,
provided there is a large enough one-particle excitations spectral gap. The idea
of proof consists of comparing the system with specially tuned soluble models.
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1. INTRODUCTION

Rigorous proofs of Bose–Einstein condensation (BEC) for realistic systems
is an ongoing challenge for almost eight decades with renewed interest after
the successful experiments with trapped gases of alkali metals. In particular
establishing a proof of condensation for a system of interacting particles
turns out to be a real hard problem. However it is believed that this the real
issue, in view of its experimental realisation in superfluid 4He.

For this work, we were inspired by the recent results on condensation
for trapped gases, i.e., inhomogeneous systems because of the external
trapping fields (1) and by the result on Bose–Einstein condensation for systems
with a gap in the one-particle excitation spectrum with a Van der Waals



family of two-body potentials by Buffet, de Smedt, and Pulé. (2) Although
these two exact results are a priori unrelated, the first one being for inhomo-
geneous systems and the second one for homogeneous systems, both start
from systems with a gap in the one-particle excitations spectrum. Heuristi-
cally, in both cases one might start from a system with a gap in the spectrum
and with condensation in the groundstate. Contrary to systems without a
gap, one can anticipate that the condensation for systems with a gap is stable
under small perturbations. One might understand that condensation in the
groundstate, which is energetically isolated by a gap, can survive the switch-
ing-on of a gentle interaction, and that fluctuations must be of macroscopic
size to overcome this gap and lift particles out of the isolated groundstate.

In this note, we turn our attention to homogeneous continuous
systems (i.e., without external trapping fields) of interacting bosons in the
standard thermodynamic limit. We prove that there is Bose–Einstein con-
densation for high enough density and low enough temperature, provided
that there is a large enough gap in the one-particle excitations spectrum. To
our knowledge, this is the first example of a proof of condensation for
systems with general two-body potentials.

We remark that for the trapped systems one proves in ref. 1 in fact
macroscopic occupation of the ground state, which is the main property of
BEC. However, as these systems are not homogeneous in any sense, there is
no notion of phase transition present. The presence of a trap yields a for-
tiori a discrete one-particle spectrum. In our models we also assume a gap
in the one-particle spectrum, and we prove standard BEC including the
phase transition (gauge symmetry breaking, off diagonal long range
order,...) which follows directly from the homogeneity of the system. There-
fore we consider our result as a step forward to the realisation of a bridge
between the homogeneous and the trapped case, leading to a concept of
phase transition also for the trapped case. In particular it might link the
notion of the standard thermodynamic limit and the so-called Gross–
Pitaevskii limit which is used in the trap case.

Another challenging problem posed by our results is of course: can
one close the gap? I.e., can one prove that BEC persists if one takes the
limit of the gap tending to zero.

These were our starting ideas. First we define our systems under con-
sideration. Let us consider a gas of interacting bosons in hypercubic boxes
L=[ − L/2, L/2]n … Rn of dimension n \ 1 with periodic boundary condi-
tions. The generalisation to other shapes for L is however readily done.
Denote by V=Ln the volume of the box L. The Hamiltonian for the
volume L of this system in the boson Fock-space FB reads

HD
L, g=TD

L − mNL+gUL, g > 0, (1.1)
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where TD
L is the kinetic energy operator with the gap D > 0 in its spectrum,

TD
L= C

k ¥ L*
eka†

kak − Da†
0a0, ek=

(
2k2

2m
. (1.2)

We take units (
2/2m=1, the sum k runs over the set Lg, dual to L, i.e.,

Lg={k ¥ Rn; ka=2pna/L; na=0, ± 1,...; a=1, 2,..., n}.

The operators a†
k and ak are the Bose creation and annihilation operators

for mode k ¥ Lg, the number operators are denoted by Nk=a†
kak, and the

total number operator in the volume L by NL=; k ¥ L* Nk.
We assume a priori the presence of a gap D in the one-particle excita-

tions spectrum, isolating the lowest energy level. This might seem rather
artificial, however note that the presence of such a gap can be realised in
several ways. A gap can be created using attractive boundary condi-
tions, (3–5) i.e., considering systems in containers L with sticky boundary
conditions. But we have to notice that the Bose condensate is not homo-
geneous in this case. Another possibility is to assume that part of the
particle interaction has caused this gap and is as such effectively
incorporated. (6) The idea of considering a gap is not new. In his book (7)

F. London attempted to introduce the gap on heuristic grounds to clarify
some of the spectral properties of superfluid 4He.

The interaction between the particles is modelled by the two-body
interaction operator

UL=1
2 F

L
2

dx dy a†(x) a†(y) v(x − y) a(y) a(x), (1.3)

where a†(x), a†(y) and a(y), a(x) are the creation and annihilation opera-
tors for the Bose particles at x, y ¥ Rn. Below we assume that the pair
interaction potential v(x) verifies the following conditions:

(a) v: Rn
Q R1 is a real, positive-type function from L1(Rn). As it is

known (the Bochner theorem (8)), a continuous function is of positive type if
and only if it is the Fourier transform of a positive measure dm of finite
total mass on Rn:

v(x)=F
R

n
dm(q) e iqx=v(−x).
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(b) Since v ¥ L1(Rn), the Fourier transform v̂(q) exists, and we suppose
that

v̂(0)=F
R

n
dx v(x) > 0 and, v̂(0) \ v̂(q), -q ¥ Rn, (1.4)

where v̂(q) \ 0 by (a).

Notice that by virtue of (a) the potential v(x) at x=0 is finite and that
v(0) \ v(x), -x ¥ Rn.

It is shown (9) that under conditions (a) and (b) the interaction is
superstable, i.e., the n-body potential satisfies the inequality

C
1 [ i < j [ n

v(xi − xj) \
A

2V
n2 − Bn

for some constants A > 0, B \ 0, for all n ¥ N, xi ¥ L and L large enough
which implies that the thermodynamic potentials exist for all values of the
chemical potential m. Moreover, our proof requires a more stringent con-
dition: it asks the constant A=v̂(0)(1 − E), with E > 0 arbitrarily small and
B=v(0)/2. These optimal stability constants for the L1-integrable poten-
tials of positive type were established by Lewis, Pulè, and de Smedt. (10)

Since these optimal constants are important for our proof, we incorporate
in this note the corresponding argument (see Section 2.1).

The superstability of the particle interaction is, together with the
assumption of a spectral gap (1.2), the physical foundation of our proof.
We prove that the zero-mode Bose–Einstein condensation in the ground-
state of the one-particle spectrum isolated from the continuous spectrum by
a gap D is robust enough under the application of a superstable interaction,
provided that this spectral gap is large enough. Therefore, we show that in
this case the zero-mode BEC is stable with respect to a class of superstable
interactions. More technically our main result, announced in ref. 11, can be
stated as follows:

Theorem 1.1. Consider a system of interacting Bose particles (1.1)
in three or more dimensions, with a two-body interaction satisfying condi-
tions (a) and (b). Fix an inverse temperature and a chemical potential
(b, m) such that m > gv̂(0) rP

c (b), then there exists a minimal value for the
gap Dmin, such that for all D \ Dmin the thermodynamic limit (limL: V Q .)
of the k=0 mode particle number occupation density is positive:

rD
0, g(b, m) — lim

L

1
V
ON0PHD

L, g
(b, m) > 0.
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O−PHD
L, g

(b, m) denotes the grand-canonical Gibbs state for the model HD
L, g

(1.1) at inverse temperature b=1/kBT and chemical potential m. v̂(0) is as
in (1.4) and rP

c (b) is the critical density of the perfect Bose gas at inverse
temperature b.

A detailed proof is found in Section 3, Figs. 1–2 illustrating this
theorem can be found in Section 4. Notice that an analogous result as in
Theorem 1.1 holds in lower dimensions n [ 2 (cf. Section 4). Our proof of
BEC is based on comparing the condensate density of the full model (1.1)
with the condensate density of specially tuned reference systems. This yields
(various) lower bounds on the condensate of the full system in terms of
thermodynamic potentials of the reference systems. The reference systems
we use are based on the mean-field Bose gas. Its thermodynamic properties,
necessary in our proof of BEC, are reviewed in Section 2.2.

This paper is organised as follows: in Section 2 the essential prelimi-
naries, i.e., superstable potentials and the thermodynamics of the mean-
field Bose gas, are reviewed, Section 3 contains the actual proofs of the new
results and a discussion on these results (Section 4) concludes the paper.

2. PRELIMINARIES

2.1. Superstable Potentials

An important aspect of particle interactions in both classical and
quantum continuous systems are their stability properties. (6, 9, 12) If the par-
ticle interaction is such that the grand-canonical partition function does not
converge, it is called catastrophic. It means that the thermodynamic pres-
sure is not everywhere well defined, and good thermodynamic behaviour is
excluded in those domains.

A useful criterion for stability is the following: a pair-potential v is
called stable (9) if the corresponding n-particle interactions can be estimated
from below as:

C
1 [ i < j [ n

v(xi − xj) \ − Bn, (2.1)

for a B \ 0, and all n \ 2, xi ¥ L. This is a sufficient condition for good
thermodynamic behaviour. An important subclass of the stable interactions
are the so-called superstable pair-potentials, (9) satisfying

C
1 [ i < j [ n

v(xi − xj) \
A

2V
n2 − Bn (2.2)
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for some constants A > 0, B \ 0, and all n \ 2, xi ¥ L, where L is large
enough. This condition (2.2) yields the existence of the grand-canonical
pressure for all values of the chemical potential m ¥ R. From (2.2), it
follows that the interaction term (1.3) satisfies the operator inequalty:

UL \
A

2V
N2

L − BNL. (2.3)

An example of superstable potentials are those verifying the conditions (a)
and (b). For this class of potentials Lewis, Pulè, and de Smedt (10) proved
the existence of optimal constants A=v̂(0)(1 − E) and B=v(0)/2 in (2.2).
Here, E > 0 is a positive constant related to the volume of L. Since we use
this result, we give a version of their proof adapted to our situation.

Lemma 2.1 (Lewis, Pulè, and de Smedt(10)). Take E > 0, and
take a real L1-function of positive type v: Rn

Q R with v̂(0) > 0 (1.4). There
exist a subset Lmin … Rn such that for each open box L, with Lmin … L, the
following inequality holds

C
1 [ i < j [ n

v(xi − xj) \ −
v(0)

2
n+

v̂(0)
2V

(1 − E) n2, (2.4)

for all n \ 2, and each set of n distinct points {x1,..., xn} … L.

Proof. By Bochner’s theorem (8) a function of positive type v defines a
positive-definite quadratic form O · , ·Pv on the space of bounded measures
on Rn:

Om1, m2Pv=FF
R

n × R
n

v(x − y) dm1(x) dm2(y).

Hence, by the Cauchy–Schwarz inequality this quadratic form satisfies

Om1, m1Pv \
|Om2, m1Pv |2

Om2, m2Pv
.

Applying this inequality to the measures

dm1(x)= C
n

i=1
dxi

(x) dx and dm2(x)=qB(L, h)(x) dx,
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where qB(L, h)(x) is the indicator of the set B(L, h)={x ¥ Rn: dist(x, L) [ h},
and xi ¥ L, i=1,..., n, n > 1, we arrive at the following estimate:

C
n

i, j=1
v(xi − xj) \

|;n
i=1 Ah

L(xi)|2

>B(L, h) dy Ah
L(y)

, (2.5)

where

Ah
L(y)=F

B(L, h)
dx v(x − y).

A lower bound for the numerator in the r.h.s. of (2.5) is found using that
for all y ¥ L one has:

|Ah
L(y) − v̂(0)| [ :Ah

L(y) − F
|x − y| [ h

dx v(x − y) :+F
|x| > h

dx |v(x)|

[ d(h), (2.6)

where d(h) is given by:

d(h)=2 F
|x| > h

dx |v(x)|. (2.7)

The last step in (2.6) is valid since for every y ¥ L, there is a ball with the
radius h and the centre at y lying inside B(L, h). Since v is an L1-function,
d(h) (2.7) converges to zero in the limit h Q .. This yields

Ah
L(y) \ v̂(0) − d(h) > 0,

for all y ¥ L and for h large enough. The last bound is valid since v̂(0) > 0,
and since d(h) \ 0 (2.7) becomes arbitrarily small for h large enough. The
numerator in the r.h.s. of (2.5) is therefore bounded from below as follows:

: C
n

i=1
Ah

L(xi) :
2

\ n2(v̂(0) − d(h))2. (2.8)

An upper bound for the denominator in the r.h.s. of (2.5) is based on the
following estimate

:F
B(L, h)

dy Ah
L(y) − Vv̂(0) :

[ :F
B(L, h)

dy Ah
L(y) − F

L

dy Ah
L(y) :+:F

L

dy Ah
L(y) − Vv̂(0) :

[ vol(B(L, h)0L) ||v||L1+Vd(h), (2.9)
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see (2.6). Hence, using the estimates (2.8) and (2.9) in (2.5), one gets

C
n

i, j=1
v(xi − xj) \

n2

V
(v̂(0) − d(h))2

v̂(0)+||v||L1 vol(B(L, h)0L)/V+d(h)
.

Notice that for any smooth-shaped L the factor vol(B(L, h)0L)/V is of
the order O(h/L), and vanishes in the limit V Q . for fixed h. Since

(v̂(0)−d(h))2

v̂(0)+||v||L1 vol(B(L, h)0L)/V+d(h)
\ v̂(0)−||v||L1 vol(B(L, h)0L)/V−3d(h),

we can choose h large enough, such that d(h)/v̂(0) < E/4, and then take
Lmin that ||v||L1 vol(B(L, h)0L)/Vv̂(0) < E/4, to obtain the estimate:

C
n

i, j=1
v(xi − xj) \

n2

V
v̂(0)(1 − E),

for all boxes L with Lmin … L. L

As it follows from the proof, this result holds for more general shapes
of L, the only condition is that vol(B(L, h)0L)/V tends to zero in the
limit V Q . for some fixed h > 0. In fact, L tends to Rn in the sense of
Van Hove (9) is enough.

Remark 2.2. From the proof it also follows that the value of E is
defined by Lmin, and that increasing the latter we can make E as small as we
want. This means that after the thermodynamic limit one can put E=0.

In ref. 10, it was also shown that the constants A=v̂(0)(1 − E) and
B=v(0)/2 in Lemma 2.1 are optimal for this type of pair-potentials. This
is based on the following argument: suppose there exists a series of positive
constants {Al}l converging for l Q . to a better superstability constant
A > v̂(0), i.e., such that for all l

C
1 [ i < j [ n

v(xi − xj) \
n2

Vl
Al, (2.10)

for all finite sets of distinct points {x1,..., xn} … Ll. Since we can choose
E > 0 small enough that A − E > v̂(0), there exists l1(E) such that Al >
A − E/2 for all l > l1(E). On the other hand, for all Ll large enough,
l > l2(E), we get

F
Ll

dx v(x − y) [ v̂(0)+E/2,

404 Lauwers et al.



uniformly in y ¥ Rn. Then by integration of both sides of (2.10) over Ln
l , for

l > max(l1(E), l2(E)) we get the estimates:

nv(0)+
n(n − 1)

Vl
(v̂(0)+E/2)

\
1

Vn
l

F
L

n
l

dx1 · · · dxn C
i, j

v(xi − xj) \
n2

Vl
(A − E/2).

Since above the n > 1 is arbitrary, these estimates imply that A − E [ v̂(0),
which is in contradiction to the hypothesis, hence yielding the optimality of
the constants in Lemma 2.1.

2.2. Thermodynamics of the Mean-Field Bose Gas

In this section we briefly review the properties of the so-called mean-
field Bose gas (sometimes also called the imperfect Bose gas), an exactly
solvable model of Bosons (13–19) (for an extended review see ref. 6), which
will play the rôle of a reference system. The mean-field Bose gas is defined
by the local Hamiltonians

HD
L, l=TD

L+
l

2V
N2

L. (2.11)

The kinetic energy operator TD
L (1.2) is identical to the one of the fully

interacting system (1.1), but the interaction term (1.3) is replaced by a kind
of mean-field interaction term. The physical relation of the model (2.11) to
our system (1.1) lies in the fact that it is the Van der Waals limit of the fully
interacting system (1.1). (2) In that case, the constant l has to be chosen
equal to the long-range part of the interaction (1.3), i.e., l=gv̂(0).

The explicit solution for the gapless case D=0 of this model can be
found at several places. (6, 13–19) Here, we focus on the case with non-vanish-
ing gap. The grand-canonical pressure function at inverse temperature b

and chemical potential m is defined as

pD
L, l(b, m)=

1
bV

ln TrFB
e−b(HD

L, l − mNL).

TrFB
denotes the trace over the boson Fock space FB. Below, we develop

explicit expressions for the pressure and the particle densities in the ther-
modynamic limit V Q ..
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Lemma 2.3 (Thermodynamic Functions). The grand-canonical
pressure pD

l (b, m)=limL pD
L, l(b, m) of the mean-field Bose gas (2.11) exists

for all b \ 0, m ¥ R and is given by the Legendre transform:

pD
l (b, m)=sup

r \ 0
(mr − fD

l (b, r)), (2.12)

where the canonical free energy fD
l (b, r) at inverse temperature b and

density r is given by

fD
l (b, r)=fP, D(b, r)+

l

2
r2, (2.13)

fP, D(b, r) is the free energy of the perfect Bose gas with gap D (1.2).

Proof. The thermodynamic pressure of the perfect Bose gas is given
by:

pP, D(b, m)=lim
L

pP, D
L (b, m)=lim

L

1
bV

TrFB
e−b(TD

L − mNL)

which implies that in order to be well defined, m must be bounded from
above: m < − D, i.e.,

pP, D
L (b, m)=

1
bV

ln C
.

n0=0
eb(D+m) n0 C

{nk}k ] 0

e−b(ek − m) nk.

The canonical free energy fP, D(b, r), is the Legendre transform of
pP, D(b, m), defined only for m [ − D,

fP, D(b, r)= sup
m [ − D

(rm − pP, D(b, m)). (2.14)

By direct calculation one finds expression (2.13) for the free energy of the
mean-field model (2.11) at temperature b and density r as

fD
l (b, r)=lim

L
−

1
bV

ln TrH(n)
B

e−bHD
L, l,

where TrH(n)
B

denotes the trace over the Hilbert space H(n)
B of symmetrised

functions for n=NrVM (integer part of rV) Bosons. Since on this space the
mean-field interaction term is constant, we immediately find:

lim
L

fL[HD
L, l](b, r)=lim

L
fL[TD

L](b, r)+
l

2
r2.
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The pressure of the mean-field gas, is again the Legendre transform of
fD

l (b, r), yielding formula (2.12), well defined for all m ¥ R. L

Theorem 2.4 (Pressure of the Mean-Field Bose Gas). The grand-
canonical pressure of the mean-field Bose Gas (2.11) is explicitly given by

pD
l (b, m)=˛p (D=0)

l (b, m), for m [ − D+lrP(b, −D);
(m+D)2/2l+pP(b, −D), for m > − D+lrP(b, −D),

(2.15)

where pP(b, m), and rP(b, m) are respectively the pressure, and the total
density of the perfect Bose gas; p (D=0)

l (b, m) is the pressure of the mean-
field Bose gas without gap.

Proof. The formula (2.15) is found by working out explicitly the
Legendre transforms in (2.12)–(2.14), and using the properties of the
perfect Bose gas. Let m=m̄L(b, r) be solution of the equation:

r=
1
V
ONLPTD

L
(b, m̄L(b, r)),

for a given r and b, where the right-hand side is the expectation value of
the total density in the grand-canonical Gibbs state for the perfect Bose gas
model TD

L. Denote the limiting solution by

m̄(b, r)=lim
L

m̄L(b, r),

We have m̄(b, r) [ − D, if r [ rP(b, −D), and m̄(b, r)=−D, if r \

rP(b, −D), hence

fP, D(b, r)=˛rm̄(b, r) − pP(b, m̄(b, r)), if r [ rP(b, −D);
− rD − pP(b, −D), if r > rP(b, −D).

(2.16)

This is the explicit expression for (2.14). The thermodynamic potentials
such as the pressure and the particle density of the free Bose gas with gap D

are the same as for the gapless perfect Bose gas, but only for the values of
m < − D. At m=−D, there is degeneracy of the densities and BEC occurs.
Since for D > 0 the critical density rP, D

c (b) — rP(b, −D) is finite in all
dimensions n \ 1, the condensation takes place in all dimensions whereas in
the gapless case rP,(D=0)

c (b) — rP
c (b) < . only for dimensions n > 2. Hence

condensation occurs only in three or more dimensions at b < ..
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Recall now the expression for the canonical free energy of the mean-
field Bose gas, Eq. (2.13). Using the expression for the free energy of the
perfect Bose gas fP, D(b, r) (2.16) derived above, one finds for “r fD

l (b, r),

“r fD
l (b, r)=˛“r fP(b, r)+lr, if r [ rP(b, −D);

− D+lr, if r > rP(b, −D).
(2.17)

By virtue of (2.17) and (2.12), one gets the expression for the the mean-field
Bose gas pressure:

pD
l (b, m)=sup

r \ 0
(mr − fD

l (b, r))

=˛mr̄(b, m) − fD
l (b, r̄(b, m)), for m [ − D+lrP(b, −D);

m(m+D)/l − fD
l (b, (m+D)/l), for m > − D+lrP(b, −D),

where r̄(b, m) is the solution of “r fP(b, r̄(b, m))+lr̄(b, m)=m as a func-
tion of m [ − D+lrP(b, −D) and b. Since by (2.16)

fP, D(b, (m+D)/l)=−D
m+D

l
− pP(b, −D),

for m+D > lrP(b, −D), where pP(b, −D) is the pressure of the free Bose
gas, we use the expression (2.13) for the free energy of the mean-field gas to
find (2.15), that proves Theorem 2.4. L

Theorem 2.5. Considering the mean-field Bose gas (2.11), we derive
the following expressions for the densities in the thermodynamic limit. The
total grand-canonical density is given by

rD
l (b, m)=˛r (D=0)

l (b, m), for m [ − D+lrP(b, −D);
(m+D)/l, for m > − D+lrP(b, −D).

(2.18)

The zero-mode condensate density is given by

rD
0, l(b, m)=˛0, for m [ − D+lrP(b, −D);

(m+D)/l − rP(b, −D), for m > − D+lrP(b, −D).
(2.19)

The limit of the expectation value ON2
LPHD

L, l
(b, m)/V2 is given by

lim
L

1
V2 ON2

LPHD
L, l

(b, m)=˛r (D=0)
l (b, m)2, for m [ − D+lrP(b, −D);

(m+D)2/l2, for m > − D+lrP(b, −D).
(2.20)
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Here r (D=0)
l (b, m) is the density for the gapless mean-field gas, i.e., for

D=0 in Eq. (2.11).

Proof. These quantities are derived using that the pressure (2.15) is a
convex function of respectively D, m and l. By the Griffith lemma (ref. 6,
Appendix C), the order of the thermodynamic limit and the corresponding
derivative can be interchanged, which gives:

rD
0, l(b, m)=lim

L

1
V
ON0PHD

L, l
(b, m)=lim

L
“D pD

L, l(b, m)=“D pD
l (b, m);

rD
l (b, m)=lim

L

1
V
ONLPHD

L, l
(b, m)=lim

L
“m pD

L, l(b, m)=“m pD
l (b, m);

lim
L

1
V2 ON2

LPHD
L, l

(b, m)=lim
L

− 2 “l pD
L, l(b, m)=−2 “l pD

l (b, m).

By virtue of (2.15) of Theorem 2.4 these imply the explicit expressions
(2.18)–(2.20) of Theorem 2.5. L

Taking the limit D a 0, we recover the usual expressions for the mean-
field Bose gas (2.11) with vanishing gap, in particular the expression for the
zero-mode condensate density in dimensions n > 2,

r (D=0)
0, l (b, m)=˛0, for m [ lrP

c (b);
m/l − rP

c (b), for m > lrP
c (b).

(2.21)

3. PROOFS OF THE MAIN RESULTS

The main idea of the proof of the condensation for the systems (1.1) is
to estimate their Bose condensate from below by the condensate of a par-
ticularly chosen reference system for which one can compute the amount of
the condensate explicitly. Thus, a judicious choice of this reference system
is a subtle point of our proof.

Since we consider superstable systems, i.e., systems where the grand-
canonical pressure is defined for all values of the chemical potential, it
seems to be natural to choose a reference system which is also superstable.
This immediately rules out the perfect Bose gas (1.2) as a reference system,
since its pressure is only well defined for m [ − D. Choosing the reference
systems within the class of mean-field Bose gases (cf. Section 2.2), which
are indeed well-known superstable systems, seems therefore a good choice.
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The reference systems that we consider are mean-field Bose systems which
are close enough to the Van der Waals limit of the fully interacting system
(1.1). Apart from the use of a reference system, the proof is based on
various convexity properties of the thermodynamic functions. In particular
it is based on the following lemma.

Lemma 3.1. The zero-mode condensate density rD
0, g(b, m) in the

thermodynamic limit of grand-canonical Gibbs states of interacting system
(1.1) with a superstable two-body potentials v satisfying the conditions (a)
and (b), has the following lower bound:

rD
0, g(b, m) \

m

gv̂(0)
+

gv̂(0)
2D

rP(b, −D)2 −
gv(0)

2D
r (D=0)

g (b, m)

−
m+D

D
rP(b, −D) − rP

c (b). (3.1)

Here r (D=0)
g (b, m) denotes the total density of the interacting gas without

gap (1.1). rP(b, −D) refers to the total density of the perfect Bose gas at
the inverse temperature b and the chemical potential m=−D, rP

c (b) is the
critical density of the perfect Bose gas. The bound is valid for values
m > gv̂(0) rP

c (b), and dimensions n > 2.

Proof. The pressure pL[HD
L] of systems with a gap in the kinetic

energy spectrum (1.2) and any stable interaction is an increasing convex
function of the parameter D \ 0. Since by Theorem 2.5 the condensate
density rD

0, g(b, m) is the derivative of the corresponding pressure with
respect to D, the convexity property yields a lower bound for the zero-mode
density ON0/VPHD

L, g
:

1
V
ON0PHD

L, g
\

pL[HD
L, g] − pL[H (D=0)

L, g ]
D

. (3.2)

Now we use a reference system to get the lower bound on the conden-
sate. This reference system is a mean-field Bose gas (2.11), defined by the
local Hamiltonian (cf. Section 2.2)

HD
L, g, A=TD

L − mNL+g
A

2V
N2

L. (3.3)

Therefore, we fix the mean-field Bose gas (2.11) interaction parameter
by taking l=gA, where g > 0 is the coupling constant (cf. (1.1)) and
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A=v̂(0)(1 − E) is the optimal superstability constant (2.2) associated with
the two-body interaction (1.3) of the full model (1.1). By virtue of the same
convexity property as in (3.2), the difference of the pressures between the
reference Bose system (3.3) with gap and without gap, is bounded from
below by the condensate density for the reference mean-field gas without
gap, i.e.,

pL[HD
L, g, A] − pL[H(D=0)

L, g, A ]
D

\
1
V
ON0PH(D=0)

L, g, A
. (3.4)

Adding the inequality (3.4) to the lower bound on the condensate density
of the full system (3.2), we introduce the reference system (3.3) in our
estimate:

1
V
ON0PHD

L, g
\

1
V
ON0PH(D=0)

L, g, A

−
1
D

(pL[HD
L, g, A] − pL[H (D=0)

L, g, A ] − pL[HD
L, g]+pL[H(D=0)

L, g ]).
(3.5)

Hence, the condensate density of the interacting model (1.1) with gap
(D > 0) is bounded from below by the condensate density of the mean-field
model (3.3) without gap (D=0), and a correction term proportional to
1/D containing the pressure differences between the full system and the
reference system.

These pressure differences will be estimated using the Bogoliubov
convexity inequality (ref. 6, Appendix D). Applied to the grand-canonical
pressures of the mean-field reference Bose gas (3.3) and the full model (1.1),
it gives

g
V
OWA

LPHD
L, g

[ pL[HD
L, g, A] − pL[HD

L, g] [
g
V
OWA

LPHD
L, g, A

, (3.6)

for any D \ 0. Here the operator WA
L is the difference between the inter-

actions of the fully interacting and the mean-field Bose gases: WA
L=

UL − AN2
L/2V. Then by virtue of (3.5) and (3.6) we get:

1
V
ON0PHD

L, g
\

1
V
ON0PH(D=0)

L, g, A
−

g
D
1 1

V
OWA

LPHD
L, g, A

−
1
V
OWA

LPH(D=0)
L, g

2 . (3.7)
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Now our task is to estimate the two expectation values of WA
L in (3.7).

An upper bound on OWA
L/VPHD

L, g, A
in (3.7) can be found using the proper-

ties of the pair-potential v and the Gibbs states of the reference system
(3.3). Expressed in terms of the creation and annihilation operators on Lg,
we get for OWA

L/VPHD
L, g, A

:

1
V
OWA

LPHD
L, g, A

=
1

2V2 C
q ¥ L*

C
k ¥ L*

C
kŒ ¥ L*

v̂(q)Oa†
kŒ+qa†

k − qakakŒPHD
L, g, A

−
1

2V2 A C
k ¥ L*

C
kŒ ¥ L*

Oa†
kŒakŒa

†
kakPHD

L, g, A
.

Exploiting the mode by mode gauge invariance of the Gibbs states of the
mean-field Bose gas (3.3), and rewriting the above expression in terms of
the occupation-number operators Nk=a†

kak we arrive at

1
V
OWA

LPHD
L, g, A

=
1

2V2 C
k

C
kŒ

(v̂(0)+v̂(k − k −) − A)ONkNkŒPHD
L, g, A

−
1

2V2 v̂(0) C
k

(ON2
kPHD

L, g, A
+ONkPHD

L, g, A
). (3.8)

Since by condition (b): v̂(0) \ v̂(k) \ 0, the coefficients in the first sum of
the r.h.s. of (3.8) are bounded as

1
2 (v̂(0)+v̂(k − k −) − A) [ v̂(0) − A/2.

From the second sum in the r.h.s. of (3.8), we retain only the quadratic
zero-mode term, by Cauchy–Schwarz inequality we have,

−
v̂(0)
2V2 ON2

0PHD
L, g, A

[ −
v̂(0)
2V2 ON0P

2
HD

L, g, A
.

This yields the following upper bound for OWA
L/VPHD

L, g, A
:

1
V
OWA

LPHD
L, g, A

[
2v̂(0) − A

2V2 ON2
LPHD

L, g, A
−

v̂(0)
2V2 ON0P

2
HD

L, g, A
. (3.9)

The expectation values appearing in the r.h.s. of (3.9) can be calculated
exactly, applying Theorem 2.5. They give in the thermodynamic limit the
upper bound: (v̂(0) − A/2) rD

g, A(b, m)2 − v̂(0) rD
0, g, A(b, m)2/2.
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The other unknown term in (3.7) is OWA
LPH(D=0)

L, g
. It can be estimated

using the superstability (2.3) of the interaction UL (1.3) by the tuning the
interaction parameter of the mean-field reference Bose gas (3.3) to be equal
to the constant A in the superstability criterion (2.3), which gives the
estimate from below:

1
V
OWA

LPH(D=0)
L, g

\ −
B
V
ONLPH(D=0)

L, g
. (3.10)

This, in particular, justifies our choice of the parameter l=gA specifying
the reference system (3.3). Using now (3.9) and (3.10) in (3.7) one finds in
the thermodynamic limit the following lower bound for the condensate
density rD

0, g(b, m)

rD
0, g(b, m) \ r (D=0)

0, g, A (b, m)+g
v̂(0)
2D

rD
0, g, A(b, m)2

−
g
D

(Br (D=0)
g (b, m)+(v̂(0) − A/2) rD

g, A(b, m)2). (3.11)

The lower bound (3.1) now follows from the explicit expressions (Theorem 2.5)
for the total density and the condensate density of the mean-field Bose gas
with gap, and from the well-known expression for the condensate density
in the gapless mean-field model (2.21) for m > gArP

c (b), i.e., in the regime
where r (D=0)

0, g, A > 0.
In the last step to (3.1) we use the optimal superstability constants for

continuous L1-potentials of positive type (cf. Lemma 2.1), i.e., we put
A=(1 − E) v̂(0), and B=v(0)/2. This gives the expression for the lower
bound in the form (3.1), since by Remark 2.2 we can put E=0 after the
thermodynamic limit. L

Notice that the lower bound (3.1) contains the term r (D=0)
g (b, m), i.e.,

the total density of the fully interacting gas without gap. It is not explicitly
known as a function of b and m. However it is always finite, and it can be
viewed as a reference parameter. Using a slightly modified reference
system, an alternative lower bound can be derived which consists only of
explicitly known functions related to the perfect Bose gas.

Lemma 3.2. The zero-mode condensate density rD
0, g(b, m) in the

thermodynamic limit of the grand-canonical Gibbs states of interacting
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systems (1.1) with superstable two-body potential v satisfying conditions (a)
and (b), has the following alternative lower bound:

rD
0, g(b, m) \

2m+gv(0)
2gv̂(0)

+
gv̂(0)

2D
rP(b, −D)2 − rP

c (b)

−
2m+2D+gv(0)

2D v̂(0)
1v(0)

2
+v̂(0) rP(b, −D)2 . (3.12)

rP(b, −D) refers to the total density of the perfect Bose gas at inverse
temperature b and chemical potential m=−D, and rP

c (b) is the critical
density of the perfect Bose gas. The bound is valid for all values m >
gv̂(0) rP

c (b), and dimensions n > 2.

Proof. The proof is completely analogous to the proof of Lemma 3.1.
But now we use the alternative reference system:

HD
L, g, A, B=TD

L − mNL+g 1 A
2V

N2
L − BNL

2 , (3.13)

which compared to the first reference system (3.3), contains an extra
interaction term. Since the term − gBNL is linear in the total number
operator, it corresponds to a shift in the chemical potential. Again, the
constants A and B coincide with the optimal superstability values (2.2) for
the pair-potential v of the full system (1.1), where g > 0.

First, we derive a bound similar to the one of (3.7) in the proof of
Lemma 3.1. Now one gets:

1
V
ON0PHD

L, g
\

1
V
ON0PH(D=0)

L, g, A, B
−

g
D
1 1

V
OWA, B

L PHD
L, g, A, B

−
1
V
OWA, B

L PH(D=0)
L, g

2 ,

(3.14)

where WA, B
L =UL − AN2

L/2V+BNL. The expectation values in the r.h.s. of
(3.14) can be estimated analogously to (3.9) and (3.10). This yields for the
upper bound:

1
V
OWA, B

L PHD
L, g, A, B

[
2v̂(0) − A

2V2 ON2
LPHD

L, g, A, B

−
v̂(0)
2V2 ON0P

2
HD

L, g, A, B
+

B
V
ONLPHD

L, g, A, B
. (3.15)
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For the lower bound of OWA, B
L PH(D=0)

L, g
we use again the superstability of the

interaction UL (1.3), and the fact that according to the superstability cri-
terion (2.3) we can take for A and B their optimal values. This gives:

1
V
OWA, B

L PH(D=0)
L, g

\ 0. (3.16)

The explicit formula (3.12) now follows if one introduces (3.15) and (3.16)
into (3.14), using the explicit expressions for the densities of the mean-
field Bose gas (Section 2.2), and for the optimal values of A and B
(Section 2.1), and finally taking taking E=0 after the thermodynamic limit,
see Remark 2.2. L

It should be remarked that one can hardly compare the bound given in
Lemma 3.1 with the one in Lemma 3.2, and hence to express an opinion
which of them yields the best result. However, as the latter bound is known
explicitly, it can be used to make numerical estimates of the condensate
density and of the minimal gap as functions of the various parameters
involved. For this we refer to ref. 11 and Section 4.

Instead, we proceed now with the proof of our Theorem 1.1, based on
the lower bound derived in Lemma 3.1. We prove that the condensate
density of the full model (1.1) is strictly positive in the domain m >
gv̂(0) rP

c (b) if the gap is large enough.

Proof of Theorem 1.1. Consider the bound from Lemma 3.1,

rD
0, g(b, m) \

m

gv̂(0)
− rP

c (b)

+
gv̂(0)

2D
rP(b, −D)2 −

gv(0)
2D

r (D=0)
g (b, m) −

m+D

D
rP(b, −D).

(3.17)

Fix the inverse temperature b and take the chemical potential m compatible
with the condition of the theorem. This ensures the positivity of the first
term in the r.h.s. of (3.11)). Now take m such that

m/gv̂(0) − rP
c (b) > 2g,

for some arbitrarily chosen g > 0. This yields a lower bound for the first
line in the r.h.s. of (3.17).
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The expression on the second line can be absolutely bounded by g

using D large enough and the fact that limD Q .rP(b, −D)=0. This gives:

:gv̂(0)
2D

rP(b, −D)2 −
gv(0)

2D
r (D=0)

g (b, m) −
m+D

D
rP(b, −D) : < g,

for all D larger than some minimal gap: D \ Dmin, which exists for the fixed
m > gv̂(0) rP

c (b).
Collecting these two estimates, we obtain that for a fixed temperature

and g > 0 one can find m and D large enough such that:

rD
0, g(b, m) > g > 0,

proving the condensation. L

Similarly one can prove the existence of the zero-mode condensation
on the basis of the bound found in Lemma 3.2.

4. DISCUSSION

So far, we are concentrated on the case of dimensions n > 2, however,
the result of Theorem 1.1 can be extended to dimensions n=1 or n=2.
A lower bound for the condensate density rD

0, g(b, m) for n [ 2 as in
Lemma 3.1 or Lemma 3.2 is derived in a similar way. It requires slightly
modified convexity arguments (3.2)–(3.4). Since the free Bose gas in
dimensions n [ 2 shows only condensation in the case of non-vanishing gap
(1.2), one has to consider in (3.2)–(3.4) the pressure differences in the form
pL[HD

L] − pL[HD0
L ], for some D0 > 0, with 0 < D0 < D, instead of D0=0.

This yields the substitution in (3.11) of r (D=0)
0, g, A (b, m) and r (D=0)

g (b, m) by
rD0

0, g, A(b, m) and rD0
g (b, m). The bounds derived in this way are valid for all

dimensions n \ 1, and lead to similar conclusions as in Theorem 1.1.
Hence, in one and two dimensional interacting Bose gases with large
enough gap (1.2), the zero-mode Bose–Einstein condensation is also
proved. Notice that this is in contrast to the Bogoliubov–Hohenberg
theorem (12, 20) which yields the absence of BEC for translation invariant
continuous Bose systems without gap for dimensions n [ 2.

We use the lower bound (3.12), which can be computed explicitly as a
function of the different parameters, to visualise our estimates. In Fig. 1,
the dependence of the lower bound on the temperature is indicated.

The lines shown on the (m, D)-graph indicate domains where the lower
bound (3.12) is positive, i.e., above each of these curves we have BEC.
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Fig. 1. (m, D)-graph with temperature dependence.

The dashed curve is the threshold for condensation calculated for inverse
temperature b=0.05, and the solid line is the threshold at inverse temper-
ature b=0.1. Clearly, for higher values of b, the condensation occurs for
smaller gaps and for smaller values of m, i.e., at lower densities.

To get an idea of the phase diagram of our model, on Fig. 2 we
present a family of thresholds as a function of the gap value D, the plotted

Fig. 2. (m, b) phase-diagram with D-dependence.
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curves are the thresholds for D=0.6, 0.8, and 2. The dotted line is the line
m=gv̂(0) rP

c (b), it indicates the border of validity of our estimates.
As above, this family is calculated by equalising the lower bound

(3.12) to zero. Notice that to get the real phase diagram one has to do this
for the left hand side of (3.1) and not for the lower bound.

Considering the high density (large m) regime, the lower bound (3.12)
can be written as

m

v̂(0)
11

g
−

1
D
1v(0)

2
+v̂(0) rP(b, −D)22+o(m),

which means that in order to have a positive lower bound for rD
0, g(b, m), we

need

D > g 1v(0)
2

+v̂(0) rP(b, −D)2 , (4.1)

for high values of m. This means that for non-zero interaction (1.3) (g > 0),
there is a non-zero lower bound on the gap width. Notice that the
minorant (4.1) is proportional to the coupling constant g \ 0.

If we now choose for the two-body interaction a family of Van der
Waals scaled pair potentials, i.e., we substitute

v(x − y) W lnv(l(x − y)), (4.2)

l > 0, in the expression for the interaction term (1.3), then we find that for
a fixed D > 0, the condition (4.1) is satisfied if l is chosen small enough and
for low enough temperatures. This is easily seen as follows: substitution
(4.2) amounts to substituting lnv(0) for v(0) and leaving v̂(0) in (4.1)
unchanged. Therefore the r.h.s. of (4.1) can be made smaller than any
D > 0, by choosing l small enough for large b such that rP(b, −D) gets
small. Hence, we recover the result of Buffet, de Smedt, and Pulé (2) about
the stability of Bose–Einstein condensation in the weakly interacting Bose
gases with the Van der Waals scaled potentials and a non-zero one-particle
spectral gap.

If v(0) tends to infinity, then the condition (4.1) can not be satisfied
for any finite gap. In this case our estimate becomes a triviality. This
behaviour is compatible with the observation that for the hard core con-
tinuous Bose gas in a scaled external field there is no condensation with a
macroscopic occupation of any level of the one-particle Hamiltonian. (21)

Finally we remark that our results are for continuous homogeneous
systems. The only assumptions we make are the gap in the one-particle
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excitations spectrum (1.2) and the superstability conditions on the pair-
potential v (conditions (a) and (b)). Various other interesting exact results
on Bose condensation are known, e.g., for Bose systems with a family of
Van der Waals potentials, (2, 22) for models with truncated interac-
tions, (6, 23, 24) or for Bose lattice models with hard core interaction and at
half-filling. (25) Only recently, a proof of BEC is found for the trapped
interacting gases, (1) i.e., for inhomogeneous systems, in the so-called
Gross–Pitaevskii limit for particle interactions.
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